Home Reference Source

src/crypt/aes-decryptor.ts

  1. import { sliceUint8 } from '../utils/typed-array';
  2.  
  3. // PKCS7
  4. export function removePadding (array: Uint8Array): Uint8Array {
  5. const outputBytes = array.byteLength;
  6. const paddingBytes = outputBytes && (new DataView(array.buffer)).getUint8(outputBytes - 1);
  7. if (paddingBytes) {
  8. return sliceUint8(array, 0, outputBytes - paddingBytes);
  9. }
  10. return array;
  11. }
  12.  
  13. export default class AESDecryptor {
  14. private rcon: Array<number> = [0x0, 0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
  15. private subMix: Array<Uint32Array> = [new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256)];
  16. private invSubMix: Array<Uint32Array> = [new Uint32Array(256), new Uint32Array(256), new Uint32Array(256), new Uint32Array(256)];
  17. private sBox: Uint32Array= new Uint32Array(256);
  18. private invSBox: Uint32Array = new Uint32Array(256);
  19. private key: Uint32Array = new Uint32Array(0);
  20.  
  21. private ksRows: number = 0;
  22. private keySize: number = 0;
  23. private keySchedule!: Uint32Array;
  24. private invKeySchedule!: Uint32Array;
  25.  
  26. constructor () {
  27. this.initTable();
  28. }
  29.  
  30. // Using view.getUint32() also swaps the byte order.
  31. uint8ArrayToUint32Array_ (arrayBuffer) {
  32. const view = new DataView(arrayBuffer);
  33. const newArray = new Uint32Array(4);
  34. for (let i = 0; i < 4; i++) {
  35. newArray[i] = view.getUint32(i * 4);
  36. }
  37.  
  38. return newArray;
  39. }
  40.  
  41. initTable () {
  42. const sBox = this.sBox;
  43. const invSBox = this.invSBox;
  44. const subMix = this.subMix;
  45. const subMix0 = subMix[0];
  46. const subMix1 = subMix[1];
  47. const subMix2 = subMix[2];
  48. const subMix3 = subMix[3];
  49. const invSubMix = this.invSubMix;
  50. const invSubMix0 = invSubMix[0];
  51. const invSubMix1 = invSubMix[1];
  52. const invSubMix2 = invSubMix[2];
  53. const invSubMix3 = invSubMix[3];
  54.  
  55. const d = new Uint32Array(256);
  56. let x = 0;
  57. let xi = 0;
  58. let i = 0;
  59. for (i = 0; i < 256; i++) {
  60. if (i < 128) {
  61. d[i] = i << 1;
  62. } else {
  63. d[i] = (i << 1) ^ 0x11b;
  64. }
  65. }
  66.  
  67. for (i = 0; i < 256; i++) {
  68. let sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
  69. sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
  70. sBox[x] = sx;
  71. invSBox[sx] = x;
  72.  
  73. // Compute multiplication
  74. const x2 = d[x];
  75. const x4 = d[x2];
  76. const x8 = d[x4];
  77.  
  78. // Compute sub/invSub bytes, mix columns tables
  79. let t = (d[sx] * 0x101) ^ (sx * 0x1010100);
  80. subMix0[x] = (t << 24) | (t >>> 8);
  81. subMix1[x] = (t << 16) | (t >>> 16);
  82. subMix2[x] = (t << 8) | (t >>> 24);
  83. subMix3[x] = t;
  84.  
  85. // Compute inv sub bytes, inv mix columns tables
  86. t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
  87. invSubMix0[sx] = (t << 24) | (t >>> 8);
  88. invSubMix1[sx] = (t << 16) | (t >>> 16);
  89. invSubMix2[sx] = (t << 8) | (t >>> 24);
  90. invSubMix3[sx] = t;
  91.  
  92. // Compute next counter
  93. if (!x) {
  94. x = xi = 1;
  95. } else {
  96. x = x2 ^ d[d[d[x8 ^ x2]]];
  97. xi ^= d[d[xi]];
  98. }
  99. }
  100. }
  101.  
  102. expandKey (keyBuffer: ArrayBuffer) {
  103. // convert keyBuffer to Uint32Array
  104. const key = this.uint8ArrayToUint32Array_(keyBuffer);
  105. let sameKey = true;
  106. let offset = 0;
  107.  
  108. while (offset < key.length && sameKey) {
  109. sameKey = (key[offset] === this.key[offset]);
  110. offset++;
  111. }
  112.  
  113. if (sameKey) {
  114. return;
  115. }
  116.  
  117. this.key = key;
  118. const keySize = this.keySize = key.length;
  119.  
  120. if (keySize !== 4 && keySize !== 6 && keySize !== 8) {
  121. throw new Error('Invalid aes key size=' + keySize);
  122. }
  123.  
  124. const ksRows = this.ksRows = (keySize + 6 + 1) * 4;
  125. let ksRow;
  126. let invKsRow;
  127.  
  128. const keySchedule = this.keySchedule = new Uint32Array(ksRows);
  129. const invKeySchedule = this.invKeySchedule = new Uint32Array(ksRows);
  130. const sbox = this.sBox;
  131. const rcon = this.rcon;
  132.  
  133. const invSubMix = this.invSubMix;
  134. const invSubMix0 = invSubMix[0];
  135. const invSubMix1 = invSubMix[1];
  136. const invSubMix2 = invSubMix[2];
  137. const invSubMix3 = invSubMix[3];
  138.  
  139. let prev;
  140. let t;
  141.  
  142. for (ksRow = 0; ksRow < ksRows; ksRow++) {
  143. if (ksRow < keySize) {
  144. prev = keySchedule[ksRow] = key[ksRow];
  145. continue;
  146. }
  147. t = prev;
  148.  
  149. if (ksRow % keySize === 0) {
  150. // Rot word
  151. t = (t << 8) | (t >>> 24);
  152.  
  153. // Sub word
  154. t = (sbox[t >>> 24] << 24) | (sbox[(t >>> 16) & 0xff] << 16) | (sbox[(t >>> 8) & 0xff] << 8) | sbox[t & 0xff];
  155.  
  156. // Mix Rcon
  157. t ^= rcon[(ksRow / keySize) | 0] << 24;
  158. } else if (keySize > 6 && ksRow % keySize === 4) {
  159. // Sub word
  160. t = (sbox[t >>> 24] << 24) | (sbox[(t >>> 16) & 0xff] << 16) | (sbox[(t >>> 8) & 0xff] << 8) | sbox[t & 0xff];
  161. }
  162.  
  163. keySchedule[ksRow] = prev = (keySchedule[ksRow - keySize] ^ t) >>> 0;
  164. }
  165.  
  166. for (invKsRow = 0; invKsRow < ksRows; invKsRow++) {
  167. ksRow = ksRows - invKsRow;
  168. if (invKsRow & 3) {
  169. t = keySchedule[ksRow];
  170. } else {
  171. t = keySchedule[ksRow - 4];
  172. }
  173.  
  174. if (invKsRow < 4 || ksRow <= 4) {
  175. invKeySchedule[invKsRow] = t;
  176. } else {
  177. invKeySchedule[invKsRow] = invSubMix0[sbox[t >>> 24]] ^ invSubMix1[sbox[(t >>> 16) & 0xff]] ^ invSubMix2[sbox[(t >>> 8) & 0xff]] ^ invSubMix3[sbox[t & 0xff]];
  178. }
  179.  
  180. invKeySchedule[invKsRow] = invKeySchedule[invKsRow] >>> 0;
  181. }
  182. }
  183.  
  184. // Adding this as a method greatly improves performance.
  185. networkToHostOrderSwap (word) {
  186. return (word << 24) | ((word & 0xff00) << 8) | ((word & 0xff0000) >> 8) | (word >>> 24);
  187. }
  188.  
  189. decrypt (inputArrayBuffer: ArrayBuffer, offset: number, aesIV: ArrayBuffer) {
  190. const nRounds = this.keySize + 6;
  191. const invKeySchedule = this.invKeySchedule;
  192. const invSBOX = this.invSBox;
  193.  
  194. const invSubMix = this.invSubMix;
  195. const invSubMix0 = invSubMix[0];
  196. const invSubMix1 = invSubMix[1];
  197. const invSubMix2 = invSubMix[2];
  198. const invSubMix3 = invSubMix[3];
  199.  
  200. const initVector = this.uint8ArrayToUint32Array_(aesIV);
  201. let initVector0 = initVector[0];
  202. let initVector1 = initVector[1];
  203. let initVector2 = initVector[2];
  204. let initVector3 = initVector[3];
  205.  
  206. const inputInt32 = new Int32Array(inputArrayBuffer);
  207. const outputInt32 = new Int32Array(inputInt32.length);
  208.  
  209. let t0, t1, t2, t3;
  210. let s0, s1, s2, s3;
  211. let inputWords0, inputWords1, inputWords2, inputWords3;
  212.  
  213. let ksRow, i;
  214. const swapWord = this.networkToHostOrderSwap;
  215.  
  216. while (offset < inputInt32.length) {
  217. inputWords0 = swapWord(inputInt32[offset]);
  218. inputWords1 = swapWord(inputInt32[offset + 1]);
  219. inputWords2 = swapWord(inputInt32[offset + 2]);
  220. inputWords3 = swapWord(inputInt32[offset + 3]);
  221.  
  222. s0 = inputWords0 ^ invKeySchedule[0];
  223. s1 = inputWords3 ^ invKeySchedule[1];
  224. s2 = inputWords2 ^ invKeySchedule[2];
  225. s3 = inputWords1 ^ invKeySchedule[3];
  226.  
  227. ksRow = 4;
  228.  
  229. // Iterate through the rounds of decryption
  230. for (i = 1; i < nRounds; i++) {
  231. t0 = invSubMix0[s0 >>> 24] ^ invSubMix1[(s1 >> 16) & 0xff] ^ invSubMix2[(s2 >> 8) & 0xff] ^ invSubMix3[s3 & 0xff] ^ invKeySchedule[ksRow];
  232. t1 = invSubMix0[s1 >>> 24] ^ invSubMix1[(s2 >> 16) & 0xff] ^ invSubMix2[(s3 >> 8) & 0xff] ^ invSubMix3[s0 & 0xff] ^ invKeySchedule[ksRow + 1];
  233. t2 = invSubMix0[s2 >>> 24] ^ invSubMix1[(s3 >> 16) & 0xff] ^ invSubMix2[(s0 >> 8) & 0xff] ^ invSubMix3[s1 & 0xff] ^ invKeySchedule[ksRow + 2];
  234. t3 = invSubMix0[s3 >>> 24] ^ invSubMix1[(s0 >> 16) & 0xff] ^ invSubMix2[(s1 >> 8) & 0xff] ^ invSubMix3[s2 & 0xff] ^ invKeySchedule[ksRow + 3];
  235. // Update state
  236. s0 = t0;
  237. s1 = t1;
  238. s2 = t2;
  239. s3 = t3;
  240.  
  241. ksRow = ksRow + 4;
  242. }
  243.  
  244. // Shift rows, sub bytes, add round key
  245. t0 = ((invSBOX[s0 >>> 24] << 24) ^ (invSBOX[(s1 >> 16) & 0xff] << 16) ^ (invSBOX[(s2 >> 8) & 0xff] << 8) ^ invSBOX[s3 & 0xff]) ^ invKeySchedule[ksRow];
  246. t1 = ((invSBOX[s1 >>> 24] << 24) ^ (invSBOX[(s2 >> 16) & 0xff] << 16) ^ (invSBOX[(s3 >> 8) & 0xff] << 8) ^ invSBOX[s0 & 0xff]) ^ invKeySchedule[ksRow + 1];
  247. t2 = ((invSBOX[s2 >>> 24] << 24) ^ (invSBOX[(s3 >> 16) & 0xff] << 16) ^ (invSBOX[(s0 >> 8) & 0xff] << 8) ^ invSBOX[s1 & 0xff]) ^ invKeySchedule[ksRow + 2];
  248. t3 = ((invSBOX[s3 >>> 24] << 24) ^ (invSBOX[(s0 >> 16) & 0xff] << 16) ^ (invSBOX[(s1 >> 8) & 0xff] << 8) ^ invSBOX[s2 & 0xff]) ^ invKeySchedule[ksRow + 3];
  249. ksRow = ksRow + 3;
  250.  
  251. // Write
  252. outputInt32[offset] = swapWord(t0 ^ initVector0);
  253. outputInt32[offset + 1] = swapWord(t3 ^ initVector1);
  254. outputInt32[offset + 2] = swapWord(t2 ^ initVector2);
  255. outputInt32[offset + 3] = swapWord(t1 ^ initVector3);
  256.  
  257. // reset initVector to last 4 unsigned int
  258. initVector0 = inputWords0;
  259. initVector1 = inputWords1;
  260. initVector2 = inputWords2;
  261. initVector3 = inputWords3;
  262.  
  263. offset = offset + 4;
  264. }
  265.  
  266. return outputInt32.buffer;
  267. }
  268. }